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The concept of tortuosity of fluid flow in porous media is discussed. A lattice-gas cellular automaton method
is applied to solve the flow of a Newtonian uncompressible fluid in a two-dimensional porous substance
constructed by randomly placed rectangles of equal size and with unrestricted overlap. A clear correlation
between the average tortuosity of the flow paths and the porosity of the substance has been found.@S1063-
651X~96!05006-4#

PACS number~s!: 47.15.2x, 47.55.2t

I. INTRODUCTION

A common characteristic of any material transport in po-
rous media, such as fluid flow or electric current, is that the
actual path followed by the transported material is micro-
scopically very complicated, or ‘‘tortuous’’@1–4# ~‘‘micro-
scopic’’ here means the size scale of the average pore size of
the substance!. The concept of tortuosity is often introduced
in the context of solving the closure problem for transport in
porous media, i.e., in deriving the macroscopic transport
equations in terms of averaged quantities alone. A usual
method of deducing, e.g., the appropriate form of the drag
force between fluid and the solid matrix, is to use some sim-
plified model of the porous material, such as the capillary
model, and to generalize the results for more realistic mate-
rials. This generalization may be attempted by introducing an
additional parameter which is supposed to take care of the
more complicated transport paths neglected in the model. In
fact tortuosity is an example of such a parameter. As a physi-
cal quantity, it can be defined in various ways. Perhaps the
most intuitive and straightforward definition is that of the
ratio of the average length of true flow paths to the length of
the system in the direction of the macroscopic flux. Notice
that by this definition, tortuosity depends not only on the
microscopic geometry of the pores, but also on the transport
mechanism under consideration.

Tortuosity could also be defined without reference to a
specific transport mechanism. This could be done, for ex-
ample, by considering the shortest continuous paths between
any two points within the pore space@5#. The advantage of
this definition is that the tortuosity parameter thus defined
will exclusively characterize the porous substance itself.
When considering tortuosity in the context of transport phe-
nomena, it seems quite more natural, however, to utilize the
flux associated with the actual transport mechanism in the
definition of tortuosity.

Moreover, it is possible to define tortuosity even without a
direct reference to the lengths of the transport paths by con-
sidering the local deviations in the direction of the micro-
scopic flux from the direction of the mean flux.~This ap-
proach will be discussed in some detail below.!

In what follows, we shall concentrate on the concept of
tortuosity associated with the flow of a Newtonian fluid
through a random porous medium at a low Reynolds num-
ber. In macroscopic terms, such a flow is governed by Dar-

cy’s law which states that the average fluxq of fluid is pro-
portional to the gradient of the phase averaged fluid pressure
p,

q52
k

m
“p. ~1!

Here,m is the dynamic viscosity of the fluid andk is the flow
permeability. In this paper, we shall first discuss the possible
definitions of tortuosity which appear in deriving Darcy’s
law in the framework of capillary models. The definition is
then generalized to random porous media. We then use a
lattice-gas cellular automaton method@6–8# to find a numeri-
cal correlation between the tortuosity and the porosity for a
two-dimensional porous material which consists of randomly
positioned freely overlapping rectangles. The advantage of
using the lattice-gas methods for this purpose is their geo-
metric versatility, which makes them very useful in simulat-
ing flows in irregular geometries@9–11#. The results ob-
tained can be applied, e.g., in inferring correlations between
the permeability coefficient and the relevant macroscopic
quantities that characterize the porous substance@12#. Find-
ing such correlations is especially important in the case of
flow through soft porous materials when flow can induce a
strain to the solid matrix, and thereby locally affect the value
of the permeability coefficientk @13#.

II. TORTUOSITY OF FLOW IN POROUS MEDIA

Darcy’s law Eq. ~1! can easily be derived within the
simple capillary theory by Kozeny, in which the porous me-
dium is envisaged as a layer of solid material with straight
parallel tubes of a fixed cross-sectional shape intersecting the
sample. Within this model, the permeability is explicitly
given ask5f3/cs2, wheref is the porosity,s is the specific
surface area, i.e., the pore surface area per unit volume of
porous material, andc is a structural parameter that depends
on the cross section of the capillaries, for cylindrical capil-
lariesc52. The simplest way to introduce tortuosity in the
capillary model is to allow the tubes to be inclined in such a
way that the axes of the capillaries form a fixed angleu with
the normal of the surface of the material~while the azimuthal
angle of the tubes is randomly distributed!. In this case per-
meability becomes
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k5
f3

ct2s2
, ~2!

where the tortuosity factort 51/cosu can be given in terms
of the tube lengthLe and the thickness of the mediumL as

t5Le /L. ~3!

„Some authors prefer to define tortuosity ast5(Le/L)
2 or as

the inverses of these two definitions@3,4#. In this paper, we
shall use definitions analogous to Eq.~3!. Thus for the tor-
tuosity defined heret>1.…

For flow in random porous media, one can replace the
‘‘tube length’’ Le by the average length of the flow paths of
a fluid particle through the sample. At least two possible
alternatives for taking this average can be considered@3#.
One may average over the actual lengths of theflow lines
themselves, disregarding thereby the fact that fluid particles
move along these flow lines at different velocities. Another
way of averaging is over the lengths of theflow lines of all
fluid particlespassing through a given cross section during a
given period of time. This leads to flux weighted averaging.
The first alternative is suitable at least for pistonlike flows,
such as molecular diffusion and electric current@3#. The lat-
ter alternative appears more natural when fluid flow in po-
rous media is considered.

In order to gain more insight into the definition~or defi-
nitions! of tortuosity of flow in porous media, we shall also
consider a solid material of thicknessL, intersected byN
cylindrical capillaries per unit transverse area. We assume
the capillaries are straight and of equal radiusR, but allow
for a randomly varying angle between them and thex axis,
which is perpendicular to the surfaces of the material. For the
i th capillary of lengthLi we define, in accordance with Eq.
~3!, t̃ i5Li /L. Next, flow through the capillaries is induced
by applying a pressure differenceDp across the sample.
Solving the Navier-Stokes equation for each capillary sepa-
rately, we can determine the average flux through the
sample, with the result

q52
f3

2s2
“p

m

1

N (
i51

N

1/t̃ i

1

N (
i51

N

t̃ i

, ~4!

where“p5(Dp/L)êx is the phase averaged pressure gradi-
ent.

Comparison of Eq.~4! with Eqs. ~1! and ~2! suggests a
definition for the tortuosity within this capillary model in the
form

t25

1

N (
i51

N

t̃ i

1

N (
i51

N

1/t̃ i

. ~5!

This definition can be expressed in a form that is more suit-
able for generalization for random porous media by convert-
ing the sums into integrals over an arbitrary planeA which is
perpendicular to thex axis ~direction of the average flux!.

Notice first that, within the capillary model, the product of
Ai , the area of the intersection of thei th tube with planeA,
and the average flow velocity in thei th capillaryv i is inde-
pendent ofi (v iAi5pR4u“pu/8m). Using this result we find
that

1

N (
i51

N

t̃ i5

(
i51

N

t̃ iv iAi
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i51
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v iAi

5
*At̃v dA
*Av dA

. ~6!

Here,v5uv~r !u is the tangential velocity of the fluid at point
r , and t̃5 t̃~r ! is the ratio of the length of the flow line
passing through the pointr to the thickness of the sample
@t̃~r ! andv are defined to be zero inside the solid phase#. A
similar result is valid for the sum containing 1/t̃ i . This sug-
gests the following definitions,

t15
*At̃v dA
*Av dA

5
*Vt̃v dV
*Vv dV

, ~7!

1/t215
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1

t̃
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*Av dA
5

*V
1

t̃
v dV

*Vv dV
, ~8!

whereV is the volume of the porous sample. The latter forms
of Eqs.~7! and~8! follow from the fact that surface integrals
do not depend on the position~x coordinate! of surfaceA
inside the sample. The tortuosity factor as determined from
Eq. ~7! can be interpreted as the average of the relative
lengths of the flow lines of all fluid elements~with a fixed
volume! passing through a given cross section during a given
period of time. The latter definition Eq.~8! corresponds to
the average of inverse lengths of the same flow lines. The
tortuosity factor~5! appearing in Darcy’s law Eq.~4! can
now be expressed in a generalized form which is applicable
in random porous materials,

t25t1t21 . ~9!

Equations~7! through~9! do not, however, provide the only
way of generalizing the results of the capillary model to the
random media. For example, in the case of capillary systems,
the tortuosity factort21 of Eq. ~8! is in fact equal to the ratio

tv[
^uvu&
^vx&

, ~10!

whereuvu is the absolute value of the local flow velocity,vx
is thex component of that velocity, and̂ & denotes the spa-
tial average over the pore space. Notice that Eq.~10! is remi-
niscent of the hypothesis made by Carman in Ref.@1# that
Le/L5V̄/ūe , whereV̄ is the average tangential velocity in a
tortuous capillary,Le is the length of that capillary,ūe is the
mean value of the projection of flow velocity on the straight
line connecting the two ends of the capillary, andL is the
length of that line. According to Eq.~10!, tv is solely deter-
mined by fluctuations of the local flow field around the di-
rection of the average flux, and has no direct connection with
the length of the actual flow paths. In deriving the above
results, we have assumed that the radius of the capil-
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laries is fixed while their lengths may vary. The results are,
however, valid also in the case of varying capillary radii,
provided that these and the lengths of the capillaries are un-
correlated.

Yet another possibility, which may be encountered in
other kinds of models, is to define the tortuosity as an aver-
age of the lengths of flow lines squared@3,4#. Analogously to
Eqs.~7! and ~8!, we may then define

~t2!
25

*Vv t̃ 2dV

*Vv dV
, ~11!

1

~t22!
2 5

*Vv
1

t̃ 2 dV

*Vv dV
. ~12!

At this point, we shall not try to select a preferred defini-
tion of tortuosity among the ones discussed above. Instead,
we will use the lattice-gas word-cellular automaton method
to find numerical correlations between these tortuosity fac-
tors and the porosity of a two-dimensional random porous
medium. In a forthcoming publication, these results will be
used to find correlations between the flow permeability and
the macroscopic characteristics of the medium@12#.

III. LATTICE-GAS SIMULATIONS

We solved numerically the two-dimensional flow in a ran-
dom porous medium using the FHP-III lattice-gas model@6#
in a discrete triangular mesh of 1003100 lattice sites. The
two-dimensional porous medium was constructed by random
positioning of rectangles of an equal size of 10310 lattice
sites and with unrestricted overlap. The porosityf of the
medium was defined as the ratio of the number of unoccu-
pied sites to the number of all lattice sites. The number of
rectanglesK in the lattice varied between 10 and 68, which
corresponds to porosities ranging from 0.9 to 0.5.~It is
straightforward to show that, with the numbers given above,
the expectation value of the porosity for a givenK is
^f&50.99K.! The number of fluid particles per lattice site
was 3.5 which provides the best approximation for the solu-
tion of the linearized Navier-Stokes equation~creeping flow!
within the present method@6#. The fluid was forced to move
in the positivex direction by applying an external force on
the particles@7#. Periodic boundary conditions were imposed
on the lattice in both directions.

Simulations were carried out for about 35 configurations
for eachK, and the total number of different configurations
was 1080. A single configuration used about 2.2 hours CPU
time on a Dec 3000 workstation. For each configuration the
system was first allowed to saturate for 40 000 time steps
which was found to yield a stationary flow pattern. The local
velocities of particles were then averaged over 400 000 time
steps in order to ensure an undisturbed and smooth flow
velocity field. Flow lines starting from randomly chosen
placesr i in the pore space were found by interpolating the
time-averaged flow velocity field. The lengthL~r i! of each
flow line ~within one length period in the directionx! was
then computed and the tortuosityt1, e.g., was calculated
using the following approximation for the volume integral of
Eq. ~7!,

t1'

(
i51

N

t̃~r i !v~r i !

(
i51

N

v~r i !

. ~13!

Here,N51000 is the number of flow lines found for each
configuration,t̃~r i)5L~r i)/Lx is the tortuosity of thei th flow
line, Lx is the length of the lattice in thex direction, and
v~r i! is the averaged tangential velocity of the fluid at the
starting point. Tortuositiest21, t2 andt22 were determined
using expressions similar to Eq.~13!, while tv was deter-
mined directly from the averaged velocity field according to
Eq. ~10!.

In Fig. 1 we show an example of the flow line fields for a
configuration of 30 rectangles corresponding to a porosity
f50.74. The vertical distances between the flow lines of this
figure are determined such that the flux between neighboring
flow lines is constant. The tortuosityt, as determined from
Eq. ~9!, is t51.2 for this particular configuration. The values
of tortuositiest1 andt21 @see Eqs.~7! and~8!# were found to
be very close to each other~see Fig. 3!. In Fig. 2 we show
the calculated tortuosityt5At1t21 as a function of porosity
f. The small dots give the values off and t for the 1080
individual configurations. The large dots with error bars
show the mean value and the standard deviation oft andf at
each value ofK. Within the porosity range covered by these
simulations, the dependence on porosity of tortuosityt is
approximately linear. The solid line shown in Fig. 2 is a fit
by

t50.8~12f!11. ~14!

In Fig. 3 we compare the simulated values of the tortuosi-
ties defined by Eqs.~7!–~12!. The curves shown in this fig-
ure are fits to the determined points which are not shown.
For tv the fit is parabolic while for the other tortuosities it is
linear. It is evident that the different definitions give approxi-
mately the same qualitative dependence on porosity, and that
the numerical values do not dramatically differ from each

FIG. 1. Flow lines through a two-dimensional random porous
medium.
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other in this porosity range. Notice finally that the presented
results are in full agreement with an approximate upper limit
of tortuosity 1.6 which follows from a model of randomly
oriented connected straight tubes@3,4# in two dimensions.

IV. DISCUSSION

We have used the lattice-gas simulation method for solv-
ing a low Reynolds number flow in a two-dimensional ma-
trix formed by randomly placed fully overlapping rectangles.
Numerical uncertainties were found to be reasonably small
provided that long enough simulation and averaging times
were used to ensure stationary states and smooth velocity
profiles. For a given obstacle configuration the tortuosities
calculated with different lattice resolutions were always
found to be close to each other, and no systematic resolution
effects were seen.

In some cases the procedure for finding a flow line pass-
ing a given starting point failed since the flow line hit a solid
wall. The contribution from such flow lines was neglected.
~See, e.g., the second flow line from the top in Fig. 1!. Such
cases were most frequently found in blocked areas where the
residual fluctuating component of the velocity was relatively
large as compared to the averaged flow velocity. The total
flux associated with the failed flow lines and thus their total
weight in the tortuosity equations was however small. Mak-
ing a conservative assumption that the true lengths of the
failed flow lines would differ by at most 30% from those of
the successful flow lines, the error caused by this and other

numerical uncertainties was estimated to be below 5%, even
at the lowest porosities where failing of flow lines was most
pronounced.

It is evident that, as a physical quantity, tortuosity is not
uniquely defined. The preferred definition depends on the
context and on the model being used. Our simulations sug-
gest, however, that the model dependence is quite small, at
least for a two-dimensional flow at relatively high porosities.
Usually the purpose of introducing tortuosity, as a parameter
in macroscopic theories dealing with transport in porous me-
dia, is to add an additional degree of freedom to account for
the rather complex structure of real porous materials. As
such, tortuosity can hardly be expected to provide more than
a qualitative description of the true transport dynamics in
these complex structures. The smallness of the differences
between the numerical values of this quantity, arising from
its various plausible definitions, seems to indicate that tortu-
osity indeed is a useful concept.

The determined interrelation Eq.~14! of porosity and tor-
tuosity can be applied, e.g., in inferring relations between
permeability and porosity@12#. The basic limitation in doing
this is that the present simulations are two dimensional. For a
three-dimensional flow around nonelongated particles, the
relation between tortuosity and porosity may not be of the
same form as for two-dimensional objects considered here.
Also, two dimensionality restricts the useful configurations
to those with quite a high porosity. This is due to the perco-
lation threshold, which is approximately atf50.33 for ran-
domly placed and freely overlapping obstacles~whose length
to width ratio is approximately 1! in two dimensions@14#.
Close to this porosity, simulations with the present method
fail. We therefore expect that the results shown here will be
most directly applicable to flow in fibrous porous media with
a high porosity.
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